

Our first question: what is Artificial Intelligence?

Generally...

• An AI is a fancy function that maps **inputs** to outputs.

input -> special -> output

More generally, given a thing, Al can tell you a thing.

Al Models

• We call different types of AI functions models.

input

cat

dog

rabbit!

tiger

chicken

output

input

by changing the shapes of input and output, models can represent a lot of different problems

output

- No labels
- No feedback
- "Find hidden structure"

- Decision process
- Reward system
- Learn series of actions

1

SUPERVISED LEARNING

Supervised Learning

- of training examples." Wikipedia
- Input-output pairs: Features and labels
- Training/learning and inference
- Most widely used ML techniques in real-world applications.

"Supervised learning (SL) is the machine learning task of learning a function that maps an input to an output based on example input-output pairs. It infers a function from labeled training data consisting of a set

Terminology alignment

Sample = (features, label)

•

- Features: independent variables, attributes, predictors, input variables, input, covariates, explanatory variables, treatment variables,
 Label: dependent variable, outcome, target variable, outcome variable,
- Label: dependent variable, outcon response variable
- . Samples: cases, observations, individuals, participants, data points
- . If you have other names for these, please let me know.

Supervised Learning

What types are there?

Classification

Predicting a label/class/category > Ex: spam or not, cancer or not, cat or dog, red wine vs. white wine

What does classification do?

data -> Model -> category

Regression Predicting a (continuous) quantity > Ex: Survival rate, wine quality, yield prediction

Regression

What is the temperature going to be tomorrow?

What does regression do?

data -> Model

Model -- Cont. value

Examples

- You're running a company, and you want to two problems.
 - will sell over the next 3 months.
 - has been hacked/compromised.
- Are they classification or regression?

develop learning algorithms to address each of

> Problem 1: You have a large inventory of identical items. You want to predict how many of these items

> Problem 2: You'd like software to examine individual

customer accounts, and for each account decide if it

Supervised Algorithms Practice

- of two problems.
- items will sell over the next 3 months.
- Can we formulate it as a classification problem?

You're running a company, and you want to develop learning algorithms to address each

Problem 1: You have a large inventory of identical items. You want to predict how many of these

Supervised Algorithms Practice

- of two problems.
- items will sell over the next 3 months.
- Can we formulate it as a classification problem?
- We could. Sometimes, we can reformulate.
- Let's start with regression instead!

You're running a company, and you want to develop learning algorithms to address each

Problem 1: You have a large inventory of identical items. You want to predict how many of these

Face Recognition

Spam Filter

Fraud Detection

Stock Price Prediction

Food Quality/Safety Prediction

"All models are wrong, some are useful" - George Box

Our dataset: wine quality

What does our dataset look like?

Center for Machine Learning and Intelligent Systems

Wine Quality Data Set Download: Data Folder, Data Set Description

Abstract: Two datasets are included, related to red and white vinho verde wine samples, from the north of Portugal. The goal is to model wine quality based on physicochemical tests (see [Cortez et al., 2009], [Web Link]).

Data Set Characteristics:	Multivariate	Number of Instances:	4898	Area:	Business
Attribute Characteristics:	Real	Number of Attributes:	12	Date Donated	2009-10-07
Associated Tasks:	Classification, Regression	Missing Values?	N/A	Number of Web Hits:	1891084

Source:

Paulo Cortez, University of Minho, Guimarães, Portugal, http://www3.dsi.uminho.pt/pcortez A. Cerdeira, F. Almeida, T. Matos and J. Reis, Viticulture Commission of the Vinho Verde Region(CVRVV), Porto, Portugal @2009

Structuring our dataset

a feature of input data

a sample is a collection of the feature set and its label

So if we want to predict wine quality...

- Fixed acidity
- Volatile acidity
- Citric acid
- Residual sugar
- Chlorides
- Free sulfur dioxide
- Total sulfur dioxide
- Density
- pH
- Sulphates
- Alcohol
- White/Red

Quality (0-10)

...we'll need a model!

- Fixed acidity
- Volatile acidity
- Citric acid
- Residual sugar
- Chlorides
- Free sulfur dioxide

- Total sulfur dioxide
- Density
- pH
- Sulphates
- Alcohol
- White/Red

• What does linear regression represent?

The features

,

Fixed acidity Volatile acidity Citric acid **Residual sugar** Chlorides Free sulfur dioxide Total sulfur dioxide Density pН Sulphates

Alcohol

White/Red

vs. The label

Quality (0-10)

Let's start with one variable.

• We'll just consider **one feature** of our **sample**.

Acidity → Model → Quality (0-10)

Quality Output

Quality

Quality

Quality

How do we evaluate these models objectively?

• error is a measure of the "incorrectness" of a line

• simple error: difference between the predicted value and the actual value

• sum-of-squares error: sum of the squared difference

between predicted and actual values

$$RSS = \sum_{i} (y_i - \hat{y}_i)^2$$

• How do we minimize error? Cost function

Sum of all of the **Square it!** squared differences $\text{COST} = \frac{1}{n} \sum_{i=0}^{n} (\hat{y}^{(i)} - y^{(i)})$ **Difference between Divide by number of** predicted and actual samples: mean error, not total error

Training a model

 $COST = \frac{1}{n} \sum_{i=0}^{n} (\hat{y}^{(i)} - y^{(i)})^2$

51

Higher-dimensional linear regression

So what about the main dataset? And its 12 features?

Higher-dimensional linear regression

Fixed acidity Volatile acidity Citric acid Residual sugar Chlorides Free sulfur dioxide Total sulfur dioxide Density pН **Sulphates** Alcohol White/Red

Higher-dimensional linear regression

Hyperplanes!

 $\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_n x_n$

More dimensions, similar math.

One key assumption we make

dataset linearity

What if our data doesn't have a linear representation?

The assumption fails...

model is unable to capture relationship between variables

We need to make our model more powerful!

• introducing higher-dimensional terms to add curvature

Polynomial regression - Which one is better?

Polynomial Regression A significant difference!

We overfit the dataset...

• The **same** cost function!

Sum of all of the squared differences **Divide by number of** samples: mean error, not total error

 $\hat{y} = w_1 x_1 + w_2 x_2^2 + w_3 x_3^3 + \dots + w_n x_n^n + \dots + w_i x_1 x_2 + \dots$

Higher-dimensional polynomial regression

• More powerful (and complex) models!

Higher-dimensional polynomial regression

• More powerful (and complex) models!

$\hat{y} = w_1 x_1 + w_2 x_2^2 + w_3 x_3^3 + \dots + w_n x_n^n + \dots + w_i x_1 x_2 + \dots$

Higher-dimensional polynomial regression

• Don't worry, the math stays the same:

$$\hat{y} = w_n x^n + w_{n-1} x^{n-1} + w_{n-2} x^{n-2} +$$
Build a
polynomial
regression
model
Ev

LOGISTIC REGRESSION

- Fixed acidity
- Volatile acidity
- Citric acid
- Residual sugar
- Chlorides
- Free sulfur dioxide
- Total sulfur dioxide
- Density
- pH
- Sulphates
- Alcohol

White = 0Red = 1

74

Why can't we just use linear or polynomial regression?

Red

Red

White

A logistic function:

$\hat{y} = \frac{1}{1 + e^{-w_0 + w_1 x_1 + \dots + w_n x_n}}$ our input features are here

Red White

A new cost function...

 $COST = -\frac{1}{n} \sum_{i=0}^{n} (y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}))$

A new cost function...

$COST = -\frac{1}{n} \sum_{i=0}^{n} (y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}))$

A new cost function...

$COST = -\frac{1}{n} \sum_{i=0}^{n} (y^{(i)} \log(y^{(i)}))$

$$\hat{y}^{(i)}$$
) + $(1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$

A new cost function...

$\text{COST} = -\frac{1}{n} \sum_{i=0}^{n} (y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}))$

A new cost function...

 $COST = -\frac{1}{n} \sum_{i=0}^{n} (y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}))$

Training logistic regression

$$COST = -\frac{1}{n} \sum_{i=0}^{n} (y^{(i)} \log x)$$

But what if we have more than two classes for output?

Multi-class classification

One vs. One and One vs. All Classification

White Red

WhiteWhiteRedChampagne

WhiteRedRedChampagneChampagne

more pairs voted for white! White White Red Champagne Champagne Red It's white!

■ One-vs-one multiclass classification uses the most "voted for" class among paired models

Problems with One vs. One Classification

One vs. All Classification

White Not white

Red Champagne Not champagne Not red

pick the answer with highest probability

A quick summary...

what is Artificial Intelligence?

Polynomial Regression

Lab time!

