

Let's talk about last week's lab!

Let's talk about last week's lab!

What circumstances made the model fit better? worse?

what does this even mean?

Progeria affects ~159 patients in the US

we have a dataset of all American pediatric patients

Progeria affects ~159 patients in the US

we have a dataset of all American pediatric patients

Q: If my model predicts with 99.99% accuracy, is it good enough?

Accuracy, Precision, and Recall

"Selection space"

TP: Model selects positive and patient is **positive**

FP: Model selects positive and patient is **negative**

FN: Model selects negative and patient is **positive**

TN: Model selects negative and patient is **negative**

Accuracy Overall ability of model

"Number of cases where we chose positive when patient is positive

and

Number of cases where we chose negative when patient is negative"

"Everything"

TP: Model selects positive and patient is **positive**

FP: Model selects positive and patient is **negative**

Accuracy

Overall ability of model

FN: Model selects negative and patient is **positive**

TN: Model selects negative and patient is **negative**

Precision

Amount of selection that's actually correct.

"Number of cases where we chose **positive** when patient is **positive**"

"All selected **positive** by the model"

Recall

Amount of what needs to be selected that is selected

"Number of cases where we chose **positive** when patient is **positive**"

"All cases that are **positive**"

Model selects positive and patient is positive

Model selects positive and patient is negative

"Selection space"

Accuracy

Overall ability of model

Model selects negative and patient is negative

Model selects negative and patient is positive

Precision

14

Amount of selection that's actually correct.

Recall

Amount of what needs to be selected that is selected

Accuracy

Overall ability of model

Amount of selection that's actually correct.

TP + TNTotal

Precision

Recall

Amount of what needs to be selected that is selected

> TP TP + FN

TP TP + FP

		Predicted condition		Sources: [6][7][8][9][10][11][12][13][14] view · talk · edit	
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR – 1	$\frac{\text{Prevalence threshold (PT)}}{=\frac{\sqrt{\text{TPR} \times \text{FPR}} - \text{FPR}}{\text{TPR} - \text{FPR}}}$
condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $=\frac{TP}{P}=1-FNR$	False negative rate (FNR), miss rate = $\frac{FN}{P}$ = 1 – TPR
Actual	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out $=\frac{FP}{N}=1-TNR$	True negative rate (TNR), specificity (SPC), selectivity $=\frac{TN}{N} = 1 - FPR$
	$\frac{\text{Prevalence}}{=\frac{P}{P+N}}$	Positive predictive value (PPV), precision $= \frac{TP}{PP} = 1 - FDR$	False omission rate (FOR) = $\frac{FN}{PN} = 1 - NPV$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Negative likelihood ratio (LR–) = $\frac{FNR}{TNR}$
	$\frac{\text{Accuracy (ACC)}}{= \frac{\text{TP} + \text{TN}}{\text{P} + \text{N}}}$	False discovery rate (FDR) = $\frac{FP}{PP}$ = 1 – PPV	Negative predictive value (NPV) = $\frac{TN}{PN}$ = 1 – FOR	Markedness (MK), deltaP (Δp) = PPV + NPV – 1	Diagnostic odds ratio (DOR) = $\frac{LR+}{LR-}$
	Balanced accuracy (BA) = $\frac{\text{TPR} + \text{TNR}}{2}$	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = $\sqrt{PPV \times TPR}$	Matthews correlation coefficient (MCC) = $\sqrt{TPR \times TNR \times PPV \times NPV}$ - $\sqrt{FNR \times FPR \times FOR \times FDR}$	Threat score (TS), critical success index (CSI), Jaccard index = $\frac{TP}{TP + FN + FP}$

https://en.wikipedia.org/wiki/Precision_and_recall

we have a dataset of all American pediatric patients

Progeria affects ~159 patients in the US

Q: If my model predicts with 99.99% accuracy, is it good enough?

Progeria affective version of the set of the

Progeria affects ~159 patients in the US

we have a dataset of all American pediatric patients

18

protein shape -->

Progeria affects ~159 patients in the US we have a dataset of all American pediatric patients

actually pretty accurate!

Accuracy

Overall ability of model $\underline{TP + TN}$

Total exactly zero

Precision

Amount of selection that's actually correct.

TP

TP + FP

Recall

we have a dataset of all American pediatric patients

Amount of what needs to be selected that is selected

Progeria affects ~159 patients in the US

Distance (mm)

quantifying "threshold"

quantifying "threshold"

ROC Curve!

ROC Curve quantify the amount of "error"/noise that is necessary for a classifier to make a good prediction

■ AUC and also Precision-Recall Area Under Curve (PR AUC).

AUC area under [the ROC] curve

what makes models fit <u>better</u>

- more data
- balanced data
- normalized data

balanced data

balanced data normalized data

Quality

let's say we have a simpler wine dataset

Quality on the y axis Acidity on the x axis

Quality

Qualityon the y axisAcidityon the x axis

Quality

Quality on the y axis Acidity on the x axis

Quality

Qualityon the y axisAcidityon the x axis

Quality

Quality on the y axis Acidity on the x axis

Quality on the y axis Acidity on the x axis

Acidity

use more data, get more accurate results

balanced data normalized data

balanced data

Let's think about logistic functions!

White

Let's think about logistic functions!

in an ideal world ...but no

What happens when we fit this dataset entirely?

Let's think about logistic functions!

Let's think about logistic functions!

Let's think about logistic functions!

Acidity

balanced data, more accurate results

balanced data

more data balanced data

more data balanced data

more data

let's clean some data!