All AlBridge

AlBridge Lecture 5

Let's talk about the last lab!

Let’s talk about the last lab!

What circumstances made the model fit better? worse?

Accuracy

"Why is it not enough?"

Progeria affects ~159 patients in the US we have a dataset of all American pediatric patients

Q: If my model predicts with 99.99\% accuracy, is it good enough?

Progeria affects ~ 159 patients in the US
we have a dataset of all American pediatric patients

a proposed model: protein shape \rightarrow Model $\rightarrow \begin{gathered}\text { no progeria } \\ \text { regardless }\end{gathered}$

Progeria affects ~ 159 patients in the US
we have a dataset of all American pediatric patients

Accuracy , Precision, and Recall

"Selection space"

"Selection space"

Model selects positive and patient is positive

"Selection space"

Model selects positive and patient is positive

Model selects positive and patient is negative

"Selection space"

Model selects positive and patient is positive

Model selects positive and patient is negative

"Selection space"

Model selects negative and patient is negative

TRUE POSITIVE

TP: Model selects positive and patient is positive

FALSE POSITIVE

FP: Model selects positive and patient is negative

"Selection space"

FALSE NEGATIVE

FN: Model selects negative and patient is positive

TRUE NEGATIVE

TN: Model selects negative and patient is negative

Overall ability of model

"Number of cases where we chose positive when patient is positive
and

Number of cases where we chose negative when patient is negative"

TP: Model selects positive and patient is positive

FP: Model selects positive and patient is negative

FN: Model selects negative and patient is positive

TN: Model selects negative and patient is negative

Accuracy

Overall ability of model
"Number of cases where we chose positive when patient is positive"

Precision

Accuracy of what we selected.
Or amount of selection that's actually correct.
"All selected positive by the model"

TP: Model selects positive and patient is positive

FP: Model selects positive and patient is negative

Accuracy

Overall ability of model

TN: Model selects negative and patient is negative

"Selection space"

FN: Model selects negative and patient is positive

Precision

Amount of selection
that's actually correct.
"Number of cases where we chose positive when patient is positive"

Recall

Accuracy of what we should select.
Or amount of what needs to be selected that is selected

"All cases that the patients are positive"

TP: Model selects positive and patient is positive

FP: Model selects positive and patient is negative

Precision

Amount of selection that's actually correct.

Accuracy
Overall ability of model

"Selection space"

FN: Model selects negative and patient is positive

TN: Model selects negative and patient is negative

Recall
Amount of what needs to be selected that is selected

FALSE POSITIVE

Accuracy

Overall ability of model

Precision
Amount of selection that's actually correct.

Recall
Amount of what needs to be selected that is selected

		Predicted condition		Sources: [6][7][8][9][10][11][12][13][14] view -talk - edit	
	Total population $=P+N$	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) $=$ TPR + TNR - 1	Prevalence threshold (PT) $=\frac{\sqrt{T P R \times F P R}-F P R}{T P R-F P R}$
	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $=\frac{T P}{P}=1-F N R$	False negative rate (FNR), miss rate $=\frac{F N}{P}=1-T P R$
	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out $=\frac{F P}{N}=1-T N R$	True negative rate (TNR), specificity (SPC), selectivity $=\frac{T N}{N}=1-F P R$
	Prevalence $=\frac{P}{P+N}$	Positive predictive value (PPV), $\begin{gathered} \text { precision } \\ =\frac{\mathrm{TP}}{\mathrm{PP}}=1-\mathrm{FDR} \end{gathered}$	False omission rate $\begin{gathered} \text { (FOR) } \\ =\frac{\mathrm{FN}}{\mathrm{PN}}=1-\mathrm{NPV} \end{gathered}$	Positive likelihood ratio (LR+) $=\frac{\mathrm{TPR}}{\mathrm{FPR}}$	Negative likelihood ratio (LR-) $=\frac{\mathrm{FNR}}{\mathrm{TNR}}$
	$\begin{gathered} \text { Accuracy (ACC) } \\ =\frac{T P+T N}{P+N} \end{gathered}$	False discovery rate (FDR) $=\frac{F P}{P P}=1-P P V$	Negative predictive $\begin{gathered} \text { value }(\mathrm{NPV})=\frac{T N}{P N} \\ =1-F O R \end{gathered}$	$\begin{gathered} \text { Markedness (MK), deltaP }(\Delta \mathrm{p}) \\ \quad=\mathrm{PPV}+\mathrm{NPV}-1 \end{gathered}$	Diagnostic odds ratio (DOR) $=\frac{\mathrm{LR}+}{\mathrm{LR}}$
	Balanced accuracy (BA) $=\frac{T P R+T N R}{2}$	$=\frac{2 P P V \times T P R}{P P V+T P R}=\frac{2 T P}{2 T P+F P+F N}$	$\begin{aligned} & \text { Fowlkes-Mallows } \\ & \text { index (FM) } \\ & =\sqrt{\mathrm{PPV} \times \mathrm{TPR}} \end{aligned}$	Matthews correlation coefficient $\begin{aligned} & (\mathrm{MCC}) \\ & =\sqrt{\mathrm{TPR} \times \mathrm{TNR} \times \mathrm{PPV} \times \mathrm{NPV}} \\ & -\sqrt{\mathrm{FNR} \times F P R \times F O R \times F D R} \end{aligned}$	Threat score (TS), critical success index (CSI), Jaccard $\text { index }=\frac{T P}{T P+F N+F P}$

Accuracy

Overall ability of model

Precision

Amount of selection that's actually correct.

$$
\frac{T P}{T P+F P}
$$

Progeria affects $\mathbf{\sim 1 5 9}$ patients in the US

Recall

Amount of what needs to be selected that is selected

Model $\rightarrow \quad \begin{gathered}\text { no progeria } \\ \text { regardless }\end{gathered}$

storytime!

storytime!

storytime!

storytime!

storytime!

quantifying "threshold"

ROC Curve!

AUC area under [the ROC] curve

Q: how do you compare these points

False Positive

Self-test

Precision-recall AUC

Q: When do we really need it? Q: what would it look like?

Especially for unbalanced datasets
more data

what makes models fit better

balanced data
normalized data
quality data
more data
balanced data
normalized data
quality data
more data
more data

more data

Quality on the y axis
Acidity on the x axis

more data

Quality on the y axis
Acidity on the x axis

more data

Quality on the y axis
Acidity on the x axis

more data

Quality on the y axis
Acidity on the x axis

more data

more data

more data

more

data
a
reminder...
that's linear(ish)*

more
data

more
data

more

data

more
data

more
data

wait... this is a t-test!
more
data

more
data

more
data

more

data

■ increased degrees-of-freedom increases the probability of the population equaling sample
more
data

E-inereased-degrees-of-freedom inereases the probability of the population equaling sample ■ more data, better line
balanced data normalized data

balanced data

Let's think about logistic functions!

balanced data

in an ideal world
...but no

balanced data

What happens when we fit this dataset entirely?
balanced data
Let's think about logistic functions!

balanced data

Let's think about logistic functions!

balanced data normalized data

normalized data

Acidity

normalized data

Acidity

normalized data

Acidity

normalized data

■ normalized data, better generalization, faster convergence

??? how to fit a line

Champagne
??? how to fit a line

??? how to fit a line

normalized data

??? how to fit a line

normalized data

normalized data

- ensure all features are internally normalized (same order of mag.)

Image credit: Passionned Group
more data
balanced data normalized data
quality data

Missing Data

Missing completely at random

Missing Data

Missing at random
Missing not at random

Missing Data

Use mean/most often
regression
more data
balanced data
normalized data
let's clean some data!

