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White = 0
Red = 1

■ categorical label outputs are named “classes”

a class

• Fixed acidity 

• Volatile acidity 

• Citric acid 

• Residual sugar 

• Chlorides 

• Free sulfur dioxide 

• Total sulfur dioxide 

• Density 

• pH 

• Sulphates 

• Alcohol

Model

Classification!
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quick review
wine datasetthat’s a lot 

of features!
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• Fixed acidity 

• Volatile acidity 

• Citric acid 

• Residual sugar 

• Chlorides 

• Free sulfur dioxide 

• Total sulfur dioxide 

• Density 

• pH 

• Sulphates 

• Alcohol

that’s a lot 
of features!

can they really be linear? 

even in high dimensions?

■ as feature counts increase, and on complex data, 
linear type model may not be the best model
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as feature counts increase, and on complex data, 
linear type models may not be the best model

we need a more complex model
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Decision 
Trees
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Can I afford it?
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Decision Trees

Can I afford it?

Is it comfortable?
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Decision Trees

Can I afford it?

Fashion

C
om

fo
rt

Is it comfortable?

Is it fashionable?
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Decision Trees

Can I afford it?

Is it comfortable?

No
Don’t buy

Yes

NoYes

Is it fashionable?Buy

NoYes

Buy Don’t buy
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Decision Trees

that seems awfully 
hard-coded!

■ flowcharts of 
decisions can create 
an explainable and 
repeatable graph of 
predictions

Price ≤ $100?

Comfort ≥ 8?

No
Don’t buy

Yes

NoYes

Fashion ≥ 8?Buy

NoYes

Buy Don’t buy
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Decision Trees

Price Comfort Fashion Purchased?

No
No

Yes

$70

$120

$20

$60

$60

$80

5

4 4

8

1 8

4 6

6 3

8 8

Yes

No

No
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Decision Trees

No
No

Yes

Yes

No

No

Purchased?
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Decision Trees

No
No Yes

YesNo
No
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Decision Trees

No
No Yes

YesNo
No
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Decision Trees

No
No Yes
Yes

No
No

No
No Yes

YesNo
No

Which one is a better split?

All no
Mostly no
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Decision Trees

Mostly
(Gini impurity)
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Decision Trees Gini impurity

0.38

0.5

0

0.44

■ as a group becomes more homogeneous, its Gini Impurity decreases.

Purchased?

No
No
Yes

Yes

Purchased?

No

No
No
No

Yes

Yes
No

No
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Decision Trees Gini impurity

■ as a group becomes more homogeneous, its Gini Impurity decreases.

■ perfect groups => 0 Gini Impurity => 100% predictions

0.38

0.5

0

0.44

Purchased?

No
No
Yes

Yes

Purchased?

No

No
No
No

Yes

Yes
No

No
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Decision Trees Gini impurity

G =
C

∑
i=1

P(i) ⋅ (1 − P(i)) ◼

Portion of that one class in 
group

Add them up for all groups

Portion of not that one 
class in the group

■ Gini impurity measures the homogeneity in a group
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Decision Trees

0

0.5

0.5

No

No

Yes

Yes

No

No

Purchased?
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Decision Trees

No
No

Yes

Yes

No

No

Purchased?

0.38

0.5

0.88
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Decision Trees

No
No

Yes

Yes

No

No

Purchased?

0

0.44

0.44

we gotta do better 
than this, right?
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Decision Trees

No
No

Yes

Yes

No

No

Purchased?

0

0.44

0.44

just split 
again!
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Decision Trees

1. Make splits and calculate Gini impurity 

2. Select the split with the lowest Gini impurity 

3. If unhappy, just split again!  

4. Repeat 1-3 as much as needed

■  

a hyperparameter
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“split”
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“split”

Comfort

Fashion

super  
comfortable

super  
fashionable
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Comfort
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“split”

Comfort

Fashion

this is fine, 
but…

???
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“split”

Comfort

Fashion

■ the binary splits in decision trees often 
don’t do well in complex, multivariate data

we need a more complex model
Support vector machines!
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Comfort

Fashion

much better!

Support vector machines!
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Comfort

Fashion

Support vector machines!
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Comfort

Fashion

Support vector machines!
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Comfort

Fashion

Support vector machines!
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the “closest” points in different samples
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■ a good split maximizes distance between 
the split line and samples

min(distance to line, over all points)

We gotta do better 
than this!

We want to make this big!
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Comfort

Fashion

max(distance to line, over all points)

Support vector machines!
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Comfort

Fashion

same line?
yes of course

max(distance to line, over all points)

Support vector machines!
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Comfort

Fashion

even better!

max(distance to line, over all points)

Support vector machines!
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Comfort

Fashion

even better!

■ support-vector machines are classifiers that divide data by 
class, aiming to create a margin that’s as wide as possible.


■ They use non-linear functions

max(distance to line, over all points)

Support vector machines!
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BACK
TO
THE PROBABILITY
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PROBABILITY
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PROBABILITY

“unalloyed complements” Spam

“$100,000 dollars” Spam

“relative dying of cancer” Spam
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PROBABILITY

“unalloyed complements” Spam

“$100,000 dollars” Spam

“relative dying of cancer” Spam

IF we have this THEN we have this
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PROBABILITY

IF we have this THEN we have this
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PROBABILITY

IF we have this THEN we have this

A |B
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PROBABILITY

IF we have this THEN we have this

A |B
- Is Spam 
- “Nigerian Prince”
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PROBABILITY

IF we have this THEN we have this

spam |nigerian prince
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PROBABILITY

IF we have this THEN we have this

spam |nigerian princeP( )
high?
low?

spam likelyNigerian prince
not spamNigerian prince

■ conditional probabilities can be used as a classifier!
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PROBABILITY

spam |nigerian princeP( ) =
P(spam)P(nigerian prince |spam)

P(nigerian prince)
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PROBABILITY

spam |nigerian princeP( ) =
P(spam)P(nigerian prince |spam)

P(nigerian prince)

% of spam in 
dataset

% of spam in 
dataset that relates 
to Nigerian prince

% of Nigerian 
prince in dataset
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PROBABILITY

spam |nigerian princeP( ) =
P(spam)P(nigerian prince |spam)

P(nigerian prince)
, offer

P(offer |spam)
P(offer)

multiplication for AND assumes independence!
“naïve”

■ conditional probabilities can be used as a classifier!
■ a classifier made this way, however, is “naïve” when 

extended to multiple features

Naïve Bayes Classifier
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Three classifiers! That’s a lot.
Let’s get to the long lab!


