All AlBridge

AIBridge Lecture 6

Classification!

Classification!

- Fixed acidity
- Volatile acidity
- Citric acid
- Residual sugar
- Chlorides
- Free sulfur dioxide
- Total sulfur dioxide
- Density

- pH
- Sulphates
- Alcohol
- categorical label outputs are named "classes"

Classification!

quick review

that's a lot of features!

- Fixed acidity
- Volatile acidity
- Citric acid
- Residual sugar
- Chlorides
- Free sulfur dioxide
- Total sulfur dioxide
- Density
- pH
- Sulphates
- Alcohol
- Fixed acidity
- Volatile acidity
- Citric acid
- Residual sugar
- Chlorides
- Free sulfur dioxide
- Total sulfur dioxide
- Density
- pH
- Sulphates
- Alcohol

that's a lot of features!

 can they really be linear? even in high dimensions?- as feature counts increase, and on complex data, linear type model may not be the best model
as feature counts increase, and on complex data, linear type models may not be the best model
we need a more complex model

Decision

Trees

Decision Trees

Decision Trees

Can I afford it?

Decision Trees

Decision Trees

Can I afford it?

Is it comfortable?

Is it fashionable?

Decision Trees

Can I afford it?

Is it comfortable?

Is it fashionable?

Decision Trees

Decision Trees

Decision Trees

that seems awfully hard-coded!

- flowcharts of decisions ¢an create an explainable and repeatable graph of predictións

Decision Trees

Price	Comfort	Fashion	Purchased?
$\$ 70$	4	6	No
$\$ 120$	5	8	No
$\$ 20$	4	4	No
$\$ 60$	1	8	Yes
$\$ 60$	6	3	No
$\$ 80$	8	8	Yes

Decision Trees

Purchased?
No
No
No
Yes
No
Yes

Decision Trees

No	Yes
No	No
No	Yes

Decision Trees

No	Yes
No	No
No	Yes

Decision Trees

Which one is a better split?

No		No
No	No	
No Yes	No	No
Yes	No	Yes
Mostly no	All no	

Decision Trees

Mostly

(Gini impurity)

Decision Trees

Purchased?		Purchased?	
	No	No	
0.38	No	No	0
	No	No	
	Yes		
		Yes	
0.5	No	No	0.44
$0.5 e s$	Yes		

- as a group becomes more homogeneous, its Gini Impurity decreases.

Decision Trees

Purchased?			Purchased?
	No	No	
0.38 No	No		
No	No	0	
	Yes		
		Yes	
0.5	No	No	0.44
Yes	Yes		

- as a group becomes more homogeneous, its Gini Impurity decreases.
- perfect groups => 0 Gini Impurity => 100% predictions

Decision Trees

Portion of that one class in Portion of not that one group class in the group

- Gini impurity measures the homogeneity in a group

Decision Trees

Purchased?
No
No

No
Yes
No
Yes

Decision Trees

Purchased?
No
No
No
Yes

No
Yes

```
0.5
0.5
```

0.88

Decision Trees

we gotta do better than this, right?

Purchased?
No

No 0
No

Yes
No 0.44
Yes

$$
\overline{0.44}
$$

Decision Trees

Purchased?
No
No 0
just split
No again!

Yes
No 0.44
Yes

$$
0.44
$$

Decision Trees

1. Make splits and calculate Gini impurity
2. Select the split with the lowest Gini impurity
3. If unhappy, just split again!
4. Repeat 1-3 as much as needed
a hyperparameter

"split"

"split"	$\begin{gathered} \circ \circ^{\circ} \\ \circ \circ_{0}^{\circ} \end{gathered}$	$\begin{aligned} & \circ \circ \\ & \circ \\ & \circ \\ & \circ \\ & \circ \end{aligned}$
	$\begin{array}{lll} \circ & \\ \circ & \\ \circ_{0}^{\circ} & \\ 0 & \circ & 0 \\ 0 & \circ & 0 \end{array}$	$\begin{gathered} 00 \\ 00 \\ 00 \\ 0 \end{gathered}$
	$\begin{array}{llll} \circ & \circ & 0 & 0 \\ 0 \circ & \end{array}$	

this is fine,
but...

Support vector machines!

Support vector machines!

Support vector machines!

Support vector machines!

We gotta do better

 than this!- a good split maximizes distance between the split line and samples

min(distance to line, over all points)

We want to make this big!

Support vector machines!

max(distance to line, over all points)

Support vector machines!

$\max ($ distance to line, over all points)

Support vector machines!

max(distance to line, over all points)

Support vector machines!

max(distance to line, over all points)

- support-vector machines are classifiers that divide data by
 class, aiming to create a margin that's as wide as possible.
- They use non-linear functions

BACK \longleftarrow THE PROBABILITY

PROBABILITY

Internal Memo:

146 Hagley Road, Birmingham
Birmingham B3 3PJ
From the Desk of
Mr. Jerry Smith
Date: 13/01/14
Attn: Sir/Madam,
I seize this opportunity to extend my unalloyed compliments of the new season to you and your family hopping that this year will bring more joy, happiness and prosperity into your house hold.

I am certain that by the time you read this letter I might have already gone back to my country United Kingdom. I visited South Africa during the New Year period and during my stay, I used the opportunity to send you this letter believing that it will reach you in good state.

PROBABILITY

Internal Memo:
146 Hagley Road, Birmingham
Birmingham B3 3PJ
From the Desk of Mr. Jerry Smith Date: 13/01/14
Attn: Sir/Madam,
I seize this opportunity to extend my unalloyed compliments of the new season to you and your family hopping that this year will bring more joy, happiness and prosperity into your house hold.
I am certain that by the fime you read this letter I might have already gone back to my country United Kingdom. I visited South Africa during the New Year period and during my stay, I used the opportunity to send you this letter believing that it will reach you in good state.

"unalloyed complements"	\longrightarrow	Spam
" $\$ 100,000$ dollars"		
"relative dying of cancer"	\longrightarrow	Spam
Spam		

PROBABILITY

IF we have this	\longrightarrow	THEN we have this Spam
"unalloyed complements"		
" $\$ 100,000$ dollars"		
"relative dying of cancer"	\longrightarrow	
Spam		

PROBABILITY

IF we have this THEN we have this

IF we have this THEN we have this

$A \mid B$

IF we have this THEN we have this

$A \mid B$

- Is Spam
- "Nigerian Prince"

IF we have this THEN we have this
spam|nigerian prince

IF we have this THEN we have this

$P($ spam \mid nigerian prince $)$

high? Nigerian prince $\quad \longrightarrow$ spam likely
low? Nigerian prince $\quad \longrightarrow$ not spam

- conditional probabilities can be used as a classifier!

PROBABILITY

$$
P(\text { spam } \mid \text { nigerian prince })=\frac{P(\text { spam }) P(\text { nigerian prince } \mid \text { spam })}{P(\text { nigerian prince })}
$$

PROBABILITY

$$
P(\text { spam } \mid \text { nigerian prince })=\frac{\begin{array}{l}
\text { \% of spam in } \\
\text { dataset that relates } \\
\text { to Nigerian prince }
\end{array}}{\begin{array}{l}
\% \text { of spam in } \\
\text { dataset }
\end{array}} \begin{aligned}
& \text { P(nigerian prince })
\end{aligned}
$$

PROBABILITY

Naïve Bayes Classifier

$$
P(\text { spam } \mid \text { nigerian prince, offer })=\frac{P(\text { spam }) P(\text { nigerian prince } \mid \text { spam })}{P(\text { nigerian prince })} \frac{P(\text { offer } \mid \text { spam })}{P(\text { offer })}
$$

- conditional probabilities can be used as a classifier!
- a classifier made this way, however, is "naïve" when extended to multiple features

Three classifiers! That's a lot.

Let's get to the long lab!

