

SUPERVISED LEARNING

Supervised Learning

- Classification:
 - Predicting a label/class/category
 - Ex: spam or not, cancer or not, cat or dog, red wine vs. white wine
- Regression:
 - Predicting a (continuous) quantity
 - > Ex: Survival rate, wine quality, yield prediction

Supervised learning

- training the model with labeled data
- Most widely used ML techniques in real world applications.

Supervised Learning

UNSUPERVISED LEARNING

Unsupervised Learning

UNSUPERVISED LEARNING

Unsupervised learning is a type of machine learning where the algorithm learns from unlabeled data without any predefined outputs or target variables.

REINFORCEMENT LEARNING

Reinforcement Learning

Linear STARS97699

Linear STARS97699ion

"slope" (rotation of the line)

Acidity

Linear STARS97099

Linear STARS97099ion

Linear STARS97099

Quality

Acidity

Linear STARS9700000

Quality

sum-of-squared error is a common error metric for linear regression
sum-of-squared error is also known as "L2 Penalty"

Linear STARS97099

Logistic Regression a possible solution...

Red = 0 **White** = 1

■ categorical label outputs are named "classes"

White

Red

Acidity

■ **sum-of-squared** error is *still a* common error metric for logistic regression

White Red Champagne

pair them up!

WhiteRedRedChampagneChampagneChampagne

WhiteRedRedChampagneChampagne

WhiteRedRedChampagneChampagne

WhiteWhiteRedRedChampagneChampagne

■ One-vs-one multiclass classification uses the most "voted for" class among paired models

■ too-precise fits to original data without generalization is called **overfitting**

■ model is unable to capture relationship between variables

How do we address under/overfitting?

we use validation and test sets, small subsets of data the model hasn't seen before,

■ **test sets** are, unlike validation sets, usually set by the data creator as common, unseen benchmark data.

overfitting can be dangerous

data ethics

data ethics

which one has pneumonia?

models, when not controlled for external factors, often overfit on easy targets