FEATURE SELECTION

Motivation

- Performance could degrade when including input variables that are not relevant to the target variable.
- Overfitting for tasks with a smaller # of samples
- A large number of variables can be computationally expensive

Typical techniques

- Remove features with low variance
- Remove features with low correlation based on statistical tests
- Sequential feature selection
 - > Forward: iteratively add the best new features
 - Backward: iteratively remove the least useful feature
- <u>https://scikit-learn.org/stable/modules/feature_se</u> <u>lection.html</u>

Feature Engineering

- Very different from feature selection
- Example: predict housing price
- Input: square footage, transaction date, built date, and price

Feature Engineering

- Very different from feature selection
- Example: predict time-to-sell of a house
- Input (features and label): square footage, lot size, transaction date, built date, and price
- Engineered features could include
 - > Cost per sq. ft
 - > House age
 - > Zip code
 - School rating
- Data preprocessing (e.g., normalization, missing data) sometimes are also considered as feature engineering

Typical process

- Brainstorm features
- Deciding what features to create
- Creating features
- Testing the impact of the identified features on the task
- Improving your features if needed
- Repeat

Features

- Feature selection
- Feature engineering
- PCA
- Differences

ML PRACTICES

- AI/ML is not a cure-all
- "All models are wrong, some are useful."
 –George Box
- Understand your models, know the assumptions and limitations of the models
- Is AI a hype or a GE?

Typical steps to apply ML

- Data preprocessing
- Trying different ML algorithms
 - Training set, validation set, test set
- Diagnostics
 - More training samples
 - > Increase/decrease feature set
 - Increase/decrease regularization
- Loop back

A ML Project

- Why ML is a suitable approach
 - > Do not use ML for the purpose of using ML
 - Evaluate existing approaches and room for improvement
- Problem abstraction and formulation
 - Set appropriate goals
 - Model complexity, data availability, evaluation
 - Domain knowledge critical
- Data collection and data cleaning
 - > What, where, and how
- ML algorithms
 - This is often the "easy" part

Characteristics of Good Problems

- Existing solutions not satisfactory
 - > Automate the process
 - Improve performance
- Data availability: suitable data available or obtainable
- Data quality and quantity
- Can evaluate proposed approaches
- Large complex problem beyond white-box modeling
- Understanding complex venue and large data